Find better matches with our advanced matching system

—% Match
—% Enemy

blackironthedog

20 M Los Angeles, CA

My Details

Last Online
Oct 14, 2012
Orientation
Straight
Ethnicity
Height
Body Type
Diet
Smokes
Drinks
Drugs
Never
Religion
Sign
Education
Job
Income
Relationship Status
Single
Relationship Type
Offspring
Pets
Speaks
English

Similar Users

My self-summary
String theory is an active research framework in particle physics that attempts to reconcile quantum mechanics and general relativity. It is a contender for a theory of everything (TOE), a self-contained mathematical model that describes all fundamental forces and forms of matter. String theory posits that the elementary particles (ie. electrons and quarks) within an atom are not 0-dimensional objects, but rather 1-dimensional oscillating lines ("strings").
The earliest string model, the bosonic string, incorporated only bosons, although this view developed to the superstring theory, which posits that a connection (a "supersymmetry") exists between bosons and fermions. String theories also require the existence of several extra dimensions to the universe that have been compactified into extremely small scales, in addition to the four known spacetime dimensions.
What I’m doing with my life
The theory has its origins in an effort to understand the strong force, the dual resonance model (1969). Subsequent to this, five superstring theories were developed that incorporated fermions and possessed other properties necessary for a theory of everything. Since the mid-1990s, in particular due to insights from dualities shown to relate the five theories, an eleven-dimensional theory called M-theory is believed to encompass all of the previously distinct superstring theories.[citation needed]
I’m really good at
Many theoretical physicists (e.g., Stephen Hawking, Edward Witten, Juan Maldacena and Leonard Susskind) believe that string theory is a step towards the correct fundamental description of nature. This is because string theory allows for the consistent combination of quantum field theory and general relativity, agrees with general insights in quantum gravity (such as the holographic principle and Black hole thermodynamics), and because it has passed many non-trivial checks of its internal consistency.[1][2][3][4] According to Hawking in particular, "M-theory is the only candidate for a complete theory of the universe."[5] Nevertheless, other physicists, such as Feynman and Glashow, have criticized string theory for not providing novel experimental predictions at accessible energy scales.[6]
The first things people usually notice about me
String theory posits that the electrons and quarks within an atom are not 0-dimensional objects, but made up of 1-dimensional strings. These strings can oscillate, giving the observed particles their flavor, charge, mass and spin. Among the modes of oscillation of the string is a massless, spin-two state—a graviton. The existence of this graviton state and the fact that the equations describing string theory include Einstein's equations for general relativity mean that string theory is a quantum theory of gravity. Since string theory is widely believed[7] to be mathematically consistent, many hope that it fully describes our universe, making it a theory of everything. String theory is known to contain configurations that describe all the observed fundamental forces and matter but with a zero cosmological constant and some new fields.[8] Other configurations have different values of the cosmological constant, and are metastable but long-lived. This leads many to believe that there is at least one metastable solution that is quantitatively identical with the standard model, with a small cosmological constant, containing dark matter and a plausible mechanism for cosmic inflation. It is not yet known whether string theory has such a solution, nor how much freedom the theory allows to choose the details.
Favorite books, movies, shows, music, and food
String theories also include objects other than strings, called branes. The word brane, derived from "membrane", refers to a variety of interrelated objects, such as D-branes, black p-branes and Neveu–Schwarz 5-branes. These are extended objects that are charged sources for differential form generalizations of the vector potential electromagnetic field. These objects are related to one another by a variety of dualities. Black hole-like black p-branes are identified with D-branes, which are endpoints for strings, and this identification is called Gauge-gravity duality. Research on this equivalence has led to new insights on quantum chromodynamics, the fundamental theory of the strong nuclear force.[9][10][11][12] The strings make closed loops unless they encounter D-branes, where they can open up into 1-dimensional lines. The endpoints of the string cannot break off the D-brane, but they can slide around on it.

Levels of magnification:
1. Macroscopic level – Matter
2. Molecular level
3. Atomic level – Protons, neutrons, and electrons
4. Subatomic level – Electron
5. Subatomic level – Quarks
6. String level
The six things I could never do without
The full theory does not yet have a satisfactory definition in all circumstances, since the scattering of strings is most straightforwardly defined by a perturbation theory. The complete quantum mechanics of high dimensional branes is not easily defined, and the behavior of string theory in cosmological settings (time-dependent backgrounds) is not fully worked out. It is also not clear as to whether there is any principle by which string theory selects its vacuum state, the spacetime configuration that determines the properties of our universe (see string theory landscape).
I spend a lot of time thinking about
String theory can be formulated in terms of an action principle, either the Nambu-Goto action or the Polyakov action, which describe how strings propagate through space and time. In the absence of external interactions, string dynamics are governed by tension and kinetic energy, which combine to produce oscillations. The quantum mechanics of strings implies these oscillations exist in discrete vibrational modes, the spectrum of the theory.
On a typical Friday night I am
On distance scales larger than the string radius, each oscillation mode behaves as a different species of particle, with its mass, spin and charge determined by the string's dynamics. Splitting and recombination of strings correspond to particle emission and absorption, giving rise to the interactions between particles. An analogy for strings' modes of vibration is a guitar string's production of multiple but distinct musical notes. In the analogy, different notes correspond to different particles. One difference is the guitar string exists in 3 dimensions, so that there are only two dimensions transverse to the string. Fundamental strings exist in 9 dimensions and the strings can vibrate in any direction, meaning that the spectrum of vibrational modes is much richer.
The most private thing I’m willing to admit
String theory includes both open strings, which have two distinct endpoints, and closed strings making a complete loop. The two types of string behave in slightly different ways, yielding two different spectra. For example, in most string theories one of the closed string modes is the graviton, and one of the open string modes is the photon. Because the two ends of an open string can always meet and connect, forming a closed string, there are no string theories without closed strings.
T
I’m looking for
  • Girls who like guys
  • Ages 18–22
  • Near me
  • For new friends
You should message me if
The earliest string model, the bosonic string, incorporated only bosonic degrees of freedom. This model describes, in low enough energies, a quantum gravity theory, which also includes (if open strings are incorporated as well) gauge fields such as the photon (or, in more general terms, any gauge theory). However, this model has problems. What is most significant is that the theory has a fundamental instability, believed to result in the decay (at least partially) of spacetime itself. In addition, as the name implies, the spectrum of particles contains only bosons, particles which, like the photon, obey particular rules of behavior. In broad terms, bosons are the constituents of radiation, but not of matter, which is made of fermions. Investigating how a string theory may include fermions in its spectrum led to the invention of supersymmetry, a mathematical relation between bosons and fermions. String theories that include fermionic vibrations are now known as superstring theories; several kinds have been described, but all are now thought to be different limits of M-theory.
Some qualitative properties of quantum strings can be understood in a fairly simple fashion. For example, quantum strings have tension, much like regular strings made of twine; this tension is considered a fundamental parameter of the theory. The tension of a quantum string is closely related to its size. Consider a closed loop of string, left to move through space without external forces. Its tension will tend to contract it into a smaller and smaller loop. Classical intuition suggests that it might shrink to a single point, but this would violate Heisenberg's uncertainty principle. The characteristic size of the string loop will be a balance between the tension force, acting to make it small, and the uncertainty effect, which keeps it "stretched". As a consequence, the minimum size of a string is related to the string tension.
[edit]